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Abstract

Relative Motion in a system of coupled rigid bodies can yield global reorientation (or
phase shift). We give a formula to compute such a phase shift and interpret the same
in geometric terms. The theory of connections in principal bundles provides the proper
setting for questions of the type addressed in this paper. A related optimal control problem
leads to singular riemannian geometry.

1. Background

In 1987, Jair Koiller introduced me to the work of M.V. Berry [1] and B. Simon [15)
on geometric phases in classical and quantum physics. Inspired by his remarks, I obtained
formulas for analogous geometric phases in multibody systems. It became apparent, from
conversations with Jerrold Marsden, that principal connections were involved. Around this
time, A. Shapere was completing his thesis on gauge kinematics of deformable bodies under
F. Wilczek [12]. In the hands of Marsden, Montgomery and Ratiu, the gauge-theoretic
links between phases and the reconstruction problem in hamiltonian mechanics {10] [6] [8]
have become very clear. In the present paper, I give a "bare hands” derivation of the phase
shift formula for coupled planar rigid bodies, formulate an optimal control problem, and
present the geometric picture that generalizes the example of this paper.

My understanding of the gauge-theoretic framework for reconstruction phases, owes
a great deal to the many conversations I have had on this subject with Jerrold Marsden,
Richard Montgomery and Tudor Ratiu. Thanks are also due to Al Shapere and Frank
Wilczek for stimulating discussions and references. This work is an off-shoot of the program
to understand the dynamics of multibody systems begun in collaboration with Marsden,
Sreenath and others.

* This work was supported in part by the AFOSR University Research Initiative
Program under grants AFOSR-87-0073 and AFOSR-90-0105, and by the National Science
Foundation’s Engineering Research Centers Program: NSFD CDR 88 03012 and also by the
Army Research Office through the Mathematical Sciences Institute at Cornell University.
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2. Planar N-body Dynamics
Consider a system of planar rigid laminae connected by single degree of freedom pin
joints. The bodies are free to float and move freely in space (in the absence of external
forces and ignoring self-collisions). See Figure 1.

Figure 1

The instantaneous configuration of such a system relative to the center-of-mass of the
assembly 1s given by the N-tuple of absolute orientations of frames rigidly affixed to each

body, say at its center-of-mass. We denote it as ¢ = (g1, -+ ,qnv) € T, the N-torus.
Let w; A ¢; denote the absolute angular velocities and w = (wi, --- ,wn)T. The joints
are assumed to be articulated via motors with drive torques u;, ¢ = 1, 2,--- (N — 1).

It can be shown [16] [18] that the N-body system is governed by a Hamiltonian control
system:

i =397 p
. a 1 —1 (2'1)
P= %3 (p, Aq)™" p) + Bu,
where J is a configuration-dependent N x N matrix that defines the free Hamiltonian,
1 -
H = >(p, 372 p), (2.2)
and the N x (N — 1) matrix B satisfles,
1 T =]
Bj; = -1 1i=7J +1, (2.3)
0 otherwise.

The matrix J depends only on the differences of absolute angles and is hence invariant
under the S! action, (g1, =+ ,qn) — (@ + ¢, @2 + ¢ ,-*-, v + ¢), where ¢ € S'.
N

The angular momentum g = Y p; is conserved (control torques are internal).
=1



The space of equivalence classes of configurations under the diagonal S' action on
TV is referred to as the (labelled) shape space. It is the space TN of joint angles
9; = qi+1 — ¢, ¢ = 1, 2,-.- N — 1. Poisson reduction by S! yields the controlled
dynamics on P = TN-1 « RV,

: OH OH :
91 = api+1 - ap' 7 = 1, 2, e ,N—l
. O0H
o= 20, + up (2.4)
. 0H OH
P2=—'a—91‘+'072'—u1+u2
0H 0H
PN-1 = — ET TN + O UN-—2 + UN-1
. 0H
PN = - -——aeN - UN-1.
N
For any choice of controls, the motions are confined to the symplectic leaves p = 3 p; =
~

constant, in P. Much of this is by now standard and may be found in [16] [18] [11]. For
Poisson reduction, see [7] [5]. We pose,

The Reconstruction Problem: Given a motion in shape space (symplectic leaf) reconstruct
the motion in configuration space (unreduced phase space).

A partial solution to the reconstruction problem can be given by considering the splitting:

w
where M = [M;;] is the N x (N — 1) matrix defined by,

0, + =1
Afijz{l, 1> ]

0, otherwise,

ande = (1, 1, ---, 1)7 is a column vector in RY. Then, using p = €-Jw, we get,
[ e -JM8 5
)] p— —_— . .--6
“1 e-Je e-Je (26)

Integrating both sides of (2.6) over a path v in the shape space, we get a formula for the
absolute reorientation or phase shift of the body numbered 1:



Aay :/ g — /e-]]\/[dg,
e e - Je

¥

=-—Y‘?—/V(6(t))dt—/e—;g—.¥—qu

~

The first term in the formula (2.7) depends on the time-parametrized path v(t) via the
centrifugal potential energy V), and we refer to this as the dynamic phase. The second
term in (2.7) depends only on the path and not on its parametrization and is referred to
as the geometric phase. The factor e - Je appearing in (2.7) is always a positive quantity
and is simply the locked inertia of the body at the shape 8. Thus when u = 0, only the
reometric phase remains and it corresponds to a retrograde rotation of the reference body

1.
Example (2 body problem)
Let u = 0. Then,
Aql — Aq%eometric (2.8)

_ _/ ] f2~+ e dy dy cos (6) 40
J I + I + 2¢d;y dg cos (6) ’
where, )
I,‘=I,'+€dz2-, t =1, 2
_ my mo
= T

m; and I; are respectively the mass and inertia about the body-center-of -mass of the it*
body and d; are as in Figure 2.

For interpretations of such phase shifts in the context of gymnastics and diving examples
and for explicit integration of (2.8), see the paper of Frohlich [3]. Formulas analogous to
(2.7) are known for the simple rigid body in 3 dimensions. See[g}[6].

For N > 2, a closed curve 4 can be the boundary of a smooth surface in shape space.
Then, by Stokes’ theorem, the geometric phase is given by,

coomesic _ _ ff (eI Mdo 9
aggemee = - ff (A (29
I

where I' is any surface in S with boundary OI' = ~.

3. An Optimal Control Problem
Substituting (2.6) in (2.5), we get
T
. I _ee J .
q—[e-Je]e_*-lil e-Je]AIG’
= Xulg) + D(q)v,

(3.1)



Figure 2

where v = 6, the shape velocity, is treated as a control. Immediately, we can ask:
(a) Is the system (3.1) accessible?
(b) Can we “solve” the variational problem,

4
m(igl / <wv,ov>g dt-
v J
subject to the conditions, S
g(to) = ¢°
o) = ¢ 7

If ¢° and ¢! are in the same equivalence class in shape space, then, (b) is just the isoholon-
omy problem of Montgomery. Here < , >¢ is a riemannian metric on shape space.

If 1 = 0 and accessibility holds, then one derives a metric geometry on configuration
space from the solution to (b). This is a singular/ subriemannian/ nonholonomic geometry
in the sense of Brockett [2], Hermann [4], Strichartz [19], and Vershik - Gershkovich [20].

Letting ¢ = 0, and using the flat metric on the shape space, the necessary conditions
for an optimal control are that there exist a state-costate pair, (q(t), p(t)) satisfying

¢ = D(q) DT(q)p
5=~ 2 (35" D) D(a)) (3.2

v = DT(q)p

-—



See Sreenath [17] for a study of these equations for N small.

4. The Geometric Picture
Everything I have done above is part of a general geometric picture first recognized
by Montgomery, Wilczek and Shapere. I give a simple treatment below.

Let (@, I, V, G) be a simple mechanical system with symmetry i.e. Q is the con-
figuration space, K is the kinetic energy/riemannian metric, V : Q — IR is a G-invariant
potential where G acts freely on Q) by isometries. The system may be extended to include
controls via the Lagrange - D’Alembert principle.

A basic object of interest is the principal bundle

Q
!
QG =S§

where S is the shape space. Let G denote the Lie algebra of G and

o, 1 G — TQq
£ = Lo (9)
define the infinitesimal action. Let I; : ¢ xG — IR define a symmetric bilinear form,

I, (& n) = K(04¢, o4 n) for all £,n € G. We also define ]Iz : G — G* by setting

I[: = oy K’® 0, and K* : TQ, — T*Q, is the usual Legendre transform. It is an easy
exercise to verify that

J# . TQ - G*
wy = J#(w,)
defined by setting J# (wy)¢ = (K°w,)(€q(q)) is the conserved momentum map of the

free hamiltonian system. Admissible controls are internal controls, i.e. they also leave J#
invariant. Consider the splitting,

TQ, = (Vert)y & (Hor),
b—l b—l
wg = o, I p + (wg — og I, )
where ¢ = J#(w,) - The splitting has the equivariance property w.r.t. the G action

and defines a principal connection. It appears that this principal connection was known
to Smale and Kummer. One can define a G-valued 1-form

4:Q -TQ Q¢
A TQy = G
w o ]IZ-1 M(q, w)

RS ) —1 _#%y-b
= (0, K"0¢)" 0, K w.



The holonomy of this connection captures the geometric phase. In the example of this
paper the splitting (3.1) defines a connection. The Lie algebra = R and hence the
connection form is just an IR-valued form. Note that if f: Q/G — Q is a cross section of
the bundle Q — Q/G then one can pull-down Ato A= f*A : Q/G — T*Q ® G. In
our example, since the bundle over shape space is trivial, one has cross-sections and the
pull-down version of the connection 1-form is precisely given by the form

e - J M dé
e - Je

in equation (2.7).
Wilczek and Shapere refer to A as the master gauge field [14], [13].

5. Final Remarks
In a complete manuscript under preparation we discuss other aspects of the problem
of this paper including the accessibility question (recall Ambrose - Singer theorem) in
geometric terms.
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